Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114019, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38551965

RESUMO

Thymic epithelial cells (TECs) orchestrate T cell development by imposing positive and negative selection on thymocytes. Current studies on TEC biology are hampered by the absence of long-term ex vivo culture platforms, while the cells driving TEC self-renewal remain to be identified. Here, we generate long-term (>2 years) expandable 3D TEC organoids from the adult mouse thymus. For further analysis, we generated single and double FoxN1-P2A-Clover, Aire-P2A-tdTomato, and Cldn4-P2A-tdTomato reporter lines by CRISPR knockin. Single-cell analyses of expanding clonal organoids reveal cells with bipotent stem/progenitor phenotypes. These clonal organoids can be induced to express Foxn1 and to generate functional cortical- and Aire-expressing medullary-like TECs upon RANK ligand + retinoic acid treatment. TEC organoids support T cell development from immature thymocytes in vitro as well as in vivo upon transplantation into athymic nude mice. This organoid-based platform allows in vitro study of TEC biology and offers a potential strategy for ex vivo T cell development.


Assuntos
Células Epiteliais , Fatores de Transcrição Forkhead , Organoides , Timo , Animais , Organoides/citologia , Organoides/metabolismo , Timo/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Camundongos , Diferenciação Celular , Camundongos Nus , Linfócitos T/citologia , Linfócitos T/metabolismo , Camundongos Endogâmicos C57BL , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Nature ; 627(8005): 865-872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509377

RESUMO

Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.


Assuntos
Astrócitos , Encefalomielite Autoimune Experimental , Memória Epigenética , Esclerose Múltipla , Animais , Feminino , Humanos , Masculino , Camundongos , Acetilcoenzima A/metabolismo , Astrócitos/enzimologia , Astrócitos/metabolismo , Astrócitos/patologia , ATP Citrato (pro-S)-Liase/metabolismo , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Sistemas CRISPR-Cas , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Inflamação/enzimologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Esclerose Múltipla/enzimologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Análise da Expressão Gênica de Célula Única , Transposases/metabolismo
3.
bioRxiv ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38260616

RESUMO

Astrocytes play important roles in the central nervous system (CNS) physiology and pathology. Indeed, astrocyte subsets defined by specific transcriptional activation states contribute to the pathology of neurologic diseases, including multiple sclerosis (MS) and its pre-clinical model experimental autoimmune encephalomyelitis (EAE) 1-8 . However, little is known about the stability of these disease-associated astrocyte subsets, their regulation, and whether they integrate past stimulation events to respond to subsequent challenges. Here, we describe the identification of an epigenetically controlled memory astrocyte subset which exhibits exacerbated pro-inflammatory responses upon re-challenge. Specifically, using a combination of single-cell RNA sequencing (scRNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing (ChIP-seq), focused interrogation of cells by nucleic acid detection and sequencing (FIND-seq), and cell-specific in vivo CRISPR/Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) used by the histone acetyltransferase p300 to control chromatin accessibility. ACLY + p300 + memory astrocytes are increased in acute and chronic EAE models; the genetic targeting of ACLY + p300 + astrocytes using CRISPR/Cas9 ameliorated EAE. We also detected responses consistent with a pro-inflammatory memory phenotype in human astrocytes in vitro ; scRNA-seq and immunohistochemistry studies detected increased ACLY + p300 + astrocytes in chronic MS lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, MS. These findings may guide novel therapeutic approaches for MS and other neurologic diseases.

4.
Sci Transl Med ; 15(721): eadi7828, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37939162

RESUMO

Astrocytes are abundant glial cells in the central nervous system (CNS) that play active roles in health and disease. Recent technologies have uncovered the functional heterogeneity of astrocytes and their extensive interactions with other cell types in the CNS. In this Review, we highlight the intricate interactions between astrocytes, other CNS-resident cells, and CNS-infiltrating cells as well as their potential therapeutic value in the context of inflammation and neurodegeneration.


Assuntos
Astrócitos , Doenças Neuroinflamatórias , Humanos , Astrócitos/metabolismo , Sistema Nervoso Central , Neuroglia , Inflamação/metabolismo
5.
Nature ; 620(7975): 881-889, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558878

RESUMO

Dendritic cells (DCs) have a role in the development and activation of self-reactive pathogenic T cells1,2. Genetic variants that are associated with the function of DCs have been linked to autoimmune disorders3,4, and DCs are therefore attractive therapeutic targets for such diseases. However, developing DC-targeted therapies for autoimmunity requires identification of the mechanisms that regulate DC function. Here, using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies, we identify a regulatory loop of negative feedback that operates in DCs to limit immunopathology. Specifically, we find that lactate, produced by activated DCs and other immune cells, boosts the expression of NDUFA4L2 through a mechanism mediated by hypoxia-inducible factor 1α (HIF-1α). NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs that are involved in the control of pathogenic autoimmune T cells. We also engineer a probiotic that produces lactate and suppresses T cell autoimmunity through the activation of HIF-1α-NDUFA4L2 signalling in DCs. In summary, we identify an immunometabolic pathway that regulates DC function, and develop a synthetic probiotic for its therapeutic activation.


Assuntos
Doenças Autoimunes , Sistema Nervoso Central , Células Dendríticas , Subunidade alfa do Fator 1 Induzível por Hipóxia , Ácido Láctico , Humanos , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/prevenção & controle , Autoimunidade , Sistema Nervoso Central/citologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácido Láctico/metabolismo , Probióticos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia , Retroalimentação Fisiológica , Lactase/genética , Lactase/metabolismo , Análise de Célula Única
7.
Exp Mol Med ; 55(5): 1033-1045, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121980

RESUMO

Memory-phenotype (MP) CD4+ T cells are a substantial population of conventional T cells that exist in steady-state mice, yet their immunological roles in autoimmune disease remain unclear. In this work, we unveil a unique phenotype of MP CD4+ T cells determined by analyzing single-cell transcriptomic data and T cell receptor (TCR) repertoires. We found that steady-state MP CD4+ T cells in the spleen were composed of heterogeneous effector subpopulations and existed regardless of germ and food antigen exposure. Distinct subpopulations of MP CD4+ T cells were specifically activated by IL-1 family cytokines and STAT activators, revealing that the cells exerted TCR-independent bystander effector functions similar to innate lymphoid cells. In particular, CCR6high subpopulation of MP CD4+ T cells were major responders to IL-23 and IL-1ß without MOG35-55 antigen reactivity, which gave them pathogenic Th17 characteristics and allowed them to contribute to autoimmune encephalomyelitis. We identified that Bhlhe40 in CCR6high MP CD4+ T cells as a key regulator of GM-CSF expression through IL-23 and IL-1ß signaling, contributing to central nervous system (CNS) pathology in experimental autoimmune encephalomyelitis. Collectively, our findings reveal the clearly distinct effector-like heterogeneity of MP CD4+ T cells in the steady state and indicate that CCR6high MP CD4+ T cells exacerbate autoimmune neuroinflammation via the Bhlhe40/GM-CSF axis in a bystander manner.


Assuntos
Encefalomielite Autoimune Experimental , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Imunidade Inata , Doenças Neuroinflamatórias , Encefalomielite Autoimune Experimental/metabolismo , Células Th17 , Interleucina-23 , Fenótipo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T CD4-Positivos , Camundongos Endogâmicos C57BL , Proteínas de Homeodomínio/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
8.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993446

RESUMO

Dendritic cells (DCs) control the generation of self-reactive pathogenic T cells. Thus, DCs are considered attractive therapeutic targets for autoimmune diseases. Using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies we identified a negative feedback regulatory pathway that operates in DCs to limit immunopathology. Specifically, we found that lactate, produced by activated DCs and other immune cells, boosts NDUFA4L2 expression through a mechanism mediated by HIF-1α. NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs involved in the control of pathogenic autoimmune T cells. Moreover, we engineered a probiotic that produces lactate and suppresses T-cell autoimmunity in the central nervous system via the activation of HIF-1α/NDUFA4L2 signaling in DCs. In summary, we identified an immunometabolic pathway that regulates DC function, and developed a synthetic probiotic for its therapeutic activation.

9.
Science ; 379(6636): 1023-1030, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893254

RESUMO

Cell-cell interactions in the central nervous system play important roles in neurologic diseases. However, little is known about the specific molecular pathways involved, and methods for their systematic identification are limited. Here, we developed a forward genetic screening platform that combines CRISPR-Cas9 perturbations, cell coculture in picoliter droplets, and microfluidic-based fluorescence-activated droplet sorting to identify mechanisms of cell-cell communication. We used SPEAC-seq (systematic perturbation of encapsulated associated cells followed by sequencing), in combination with in vivo genetic perturbations, to identify microglia-produced amphiregulin as a suppressor of disease-promoting astrocyte responses in multiple sclerosis preclinical models and clinical samples. Thus, SPEAC-seq enables the high-throughput systematic identification of cell-cell communication mechanisms.


Assuntos
Anfirregulina , Astrócitos , Comunicação Autócrina , Testes Genéticos , Técnicas Analíticas Microfluídicas , Microglia , Astrócitos/fisiologia , Testes Genéticos/métodos , Ensaios de Triagem em Larga Escala , Técnicas Analíticas Microfluídicas/métodos , Microglia/fisiologia , Anfirregulina/genética , Comunicação Autócrina/genética , Expressão Gênica , Humanos
10.
Nature ; 614(7947): 326-333, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599367

RESUMO

Multiple sclerosis is a chronic inflammatory disease of the central nervous system1. Astrocytes are heterogeneous glial cells that are resident in the central nervous system and participate in the pathogenesis of multiple sclerosis and its model experimental autoimmune encephalomyelitis2,3. However, few unique surface markers are available for the isolation of astrocyte subsets, preventing their analysis and the identification of candidate therapeutic targets; these limitations are further amplified by the rarity of pathogenic astrocytes. Here, to address these challenges, we developed focused interrogation of cells by nucleic acid detection and sequencing (FIND-seq), a high-throughput microfluidic cytometry method that combines encapsulation of cells in droplets, PCR-based detection of target nucleic acids and droplet sorting to enable in-depth transcriptomic analyses of cells of interest at single-cell resolution. We applied FIND-seq to study the regulation of astrocytes characterized by the splicing-driven activation of the transcription factor XBP1, which promotes disease pathology in multiple sclerosis and experimental autoimmune encephalomyelitis4. Using FIND-seq in combination with conditional-knockout mice, in vivo CRISPR-Cas9-driven genetic perturbation studies and bulk and single-cell RNA sequencing analyses of samples from mouse experimental autoimmune encephalomyelitis and humans with multiple sclerosis, we identified a new role for the nuclear receptor NR3C2 and its corepressor NCOR2 in limiting XBP1-driven pathogenic astrocyte responses. In summary, we used FIND-seq to identify a therapeutically targetable mechanism that limits XBP1-driven pathogenic astrocyte responses. FIND-seq enables the investigation of previously inaccessible cells, including rare cell subsets defined by unique gene expression signatures or other nucleic acid markers.


Assuntos
Astrócitos , Encefalomielite Autoimune Experimental , Microfluídica , Esclerose Múltipla , Ácidos Nucleicos , Análise da Expressão Gênica de Célula Única , Animais , Humanos , Camundongos , Astrócitos/metabolismo , Astrócitos/patologia , Regulação da Expressão Gênica , Camundongos Knockout , Esclerose Múltipla/patologia , Microfluídica/métodos , Análise da Expressão Gênica de Célula Única/métodos , Ácidos Nucleicos/análise , Edição de Genes
11.
Nature ; 611(7937): 801-809, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36266581

RESUMO

Genome-wide association studies have identified risk loci linked to inflammatory bowel disease (IBD)1-a complex chronic inflammatory disorder of the gastrointestinal tract. The increasing prevalence of IBD in industrialized countries and the augmented disease risk observed in migrants who move into areas of higher disease prevalence suggest that environmental factors are also important determinants of IBD susceptibility and severity2. However, the identification of environmental factors relevant to IBD and the mechanisms by which they influence disease has been hampered by the lack of platforms for their systematic investigation. Here we describe an integrated systems approach, combining publicly available databases, zebrafish chemical screens, machine learning and mouse preclinical models to identify environmental factors that control intestinal inflammation. This approach established that the herbicide propyzamide increases inflammation in the small and large intestine. Moreover, we show that an AHR-NF-κB-C/EBPß signalling axis operates in T cells and dendritic cells to promote intestinal inflammation, and is targeted by propyzamide. In conclusion, we developed a pipeline for the identification of environmental factors and mechanisms of pathogenesis in IBD and, potentially, other inflammatory diseases.


Assuntos
Meio Ambiente , Herbicidas , Inflamação , Doenças Inflamatórias Intestinais , Intestinos , Animais , Camundongos , Inflamação/induzido quimicamente , Inflamação/etiologia , Inflamação/imunologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Peixe-Zebra , Aprendizado de Máquina , Bases de Dados Factuais , Modelos Animais de Doenças , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/metabolismo , Intestinos/patologia , NF-kappa B , Proteína beta Intensificadora de Ligação a CCAAT , Receptores de Hidrocarboneto Arílico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Herbicidas/efeitos adversos
12.
Nat Rev Drug Discov ; 21(5): 339-358, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35173313

RESUMO

Astrocytes are abundant glial cells in the central nervous system (CNS) that perform diverse functions in health and disease. Astrocyte dysfunction is found in numerous diseases, including multiple sclerosis, Alzheimer disease, Parkinson disease, Huntington disease and neuropsychiatric disorders. Astrocytes regulate glutamate and ion homeostasis, cholesterol and sphingolipid metabolism and respond to environmental factors, all of which have been implicated in neurological diseases. Astrocytes also exhibit significant heterogeneity, driven by developmental programmes and stimulus-specific cellular responses controlled by CNS location, cell-cell interactions and other mechanisms. In this Review, we highlight general mechanisms of astrocyte regulation and their potential as therapeutic targets, including drugs that alter astrocyte metabolism, and therapies that target transporters and receptors on astrocytes. Emerging ideas, such as engineered probiotics and glia-to-neuron conversion therapies, are also discussed. We further propose a concise nomenclature for astrocyte subsets that we use to highlight the roles of astrocytes and specific subsets in neurological diseases.


Assuntos
Esclerose Múltipla , Doenças do Sistema Nervoso , Astrócitos/metabolismo , Comunicação Celular , Ácido Glutâmico/metabolismo , Humanos , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/terapia
13.
Adv Sci (Weinh) ; 8(14): 2004973, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34306974

RESUMO

Regulatory T cells play a key role in immune tolerance to self-antigens, thereby preventing autoimmune diseases. However, no drugs targeting Treg cells have been approved for clinical trials yet. Here, a chimeric peptide is generated by conjugation of the cytoplasmic domain of CTLA-4 (ctCTLA-4) with dNP2 for intracellular delivery, dNP2-ctCTLA-4, and evaluated Foxp3 expression during Th0, Th1, Treg, and Th17 differentiation dependent on TGF-ß. The lysine motif of ctCTLA-4, not tyrosine motif, is required for Foxp3 expression for Treg induction and amelioration of experimental autoimmune encephalomyelitis (EAE). Transcriptome analysis reveals that dNP2-ctCTLA-4-treated T cells express Treg transcriptomic patterns with properties of suppressive functions. In addition, the molecular interaction between the lysine motif of ctCTLA-4 and PKC-η is critical for Foxp3 expression. Although both CTLA-4-Ig and dNP2-ctCTLA-4 treatment in vivo ameliorated EAE progression, only dNP2-ctCTLA-4 requires Treg cells for inhibition of disease progression and prevention of relapse. Furthermore, the CTLA-4 signaling peptide is able to induce human Tregs in vitro and in vivo as well as from peripheral blood mononuclear cells (PBMCs) of multiple sclerosis patients. These results collectively suggest that the chimeric CTLA-4 signaling peptide can be used for successful induction of regulatory T cells in vivo to control autoimmune diseases, such as multiple sclerosis.


Assuntos
Antígeno CTLA-4/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Animais , Antígeno CTLA-4/genética , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/genética , Recidiva
14.
Exp Mol Med ; 52(8): 1255-1263, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32859954

RESUMO

T cells are the central mediators of both humoral and cellular adaptive immune responses. Highly specific receptor-mediated clonal selection and expansion of T cells assure antigen-specific immunity. In addition, encounters with cognate antigens generate immunological memory, the capacity for long-term, antigen-specific immunity against previously encountered pathogens. However, T-cell receptor (TCR)-independent activation, termed "bystander activation", has also been found. Bystander-activated T cells can respond rapidly and secrete effector cytokines even in the absence of antigen stimulation. Recent studies have rehighlighted the importance of antigen-independent bystander activation of CD4+ T cells in infection clearance and autoimmune pathogenesis, suggesting the existence of a distinct innate-like immunological function performed by conventional T cells. In this review, we discuss the inflammatory mediators that activate bystander CD4+ T cells and the potential physiological roles of these cells during infection, autoimmunity, and cancer.


Assuntos
Imunidade Adaptativa , Efeito Espectador/imunologia , Linfócitos T CD4-Positivos/imunologia , Imunidade Inata , Animais , Citocinas/metabolismo , Humanos , Ativação Linfocitária/imunologia
15.
Mol Ther Methods Clin Dev ; 16: 32-41, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-31737742

RESUMO

Nuclear factor of activated T cells (NFATs) is an important transcription factor for T cell activation and proliferation. Recent studies have highlighted the role of NFATs in regulating the differentiation of effector CD4 T helper (Th) subsets including Th1 and Th17 cells. Because controlling the effector T cell function is important for the treatment of autoimmune diseases, regulation of NFAT functions in T cells would be an important strategy to control the pathogenesis of autoimmune diseases. Here, we demonstrated that an NFAT inhibitory peptide, VIVIT conjugated to dNP2 (dNP2-VIVIT), a blood-brain barrier-permeable peptide, ameliorated experimental autoimmune encephalomyelitis (EAE) by inhibiting Th1 and Th17 cells, but not regulatory T (Treg) cells. dNP2-VIVIT negatively regulated spinal cord-infiltrating interleukin-17A (IL-17A) and interferon (IFN)-γ-producing CD4+ T cells without affecting the number of Foxp3+ CD4+ Treg cells, whereas dNP2-VEET or 11R-VIVIT could not significantly inhibit EAE. In comparison with cyclosporin A (CsA), dNP2-VIVIT selectively inhibited Th1 and Th17 differentiation, whereas CsA inhibited the differentiation of all T cell subsets including that of Th2 and Treg cells. Collectively, this study demonstrated the role of dNP2-VIVIT as a novel agent for the treatment of autoimmune diseases such as multiple sclerosis by regulating the functions of Th1 and Th17 cells.

16.
Immune Netw ; 19(5): e35, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31720046

RESUMO

Curcumin is a natural product extracted from Curcuma longa. It has been reported as a potent antioxidant and anti-inflammatory compound. Previous studies have demonstrated that curcumin suppresses pro-inflammatory cytokine production via inhibition of NF-κB in macrophages. However, its role in adaptive immune cells such as T cells, in vivo, has not clearly been elucidated. Here, we examined the effects of curcumin in T follicular helper (TFH) cells and on Ab production during NP-ovalbumin immunization in mice. The results revealed that curcumin administered daily significantly increased CXCR5+B-cell lymphoma 6+ TFH cells and CD95+GL-7+ germinal center (GC) B cells in draining lymph nodes. In addition, curcumin treatment in mice induced total Ab production as well as high affinity IgG1 and IgG2b Ab production. Collectively, these results suggest that curcumin has positive regulatory roles in TFH cell functions and GC responses. Thus, this could be an advantageous supplement to enhance humoral immunity against infectious diseases and cancer.

17.
Nat Commun ; 10(1): 709, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755603

RESUMO

T cells generate antigen-specific immune responses to their cognate antigen as a hallmark of adaptive immunity. Despite the importance of antigen-specific T cells, here we show that antigen non-related, bystander memory-like CD4+ T cells also significantly contribute to autoimmune pathogenesis. Transcriptome analysis demonstrates that interleukin (IL)-1ß- and IL-23-prime T cells that express pathogenic TΗ17 signature genes such as RORγt, CCR6, and granulocyte macrophage colony-stimulating factor (GM-CSF). Importantly, when co-transferred with myelin-specific 2D2 TCR-transgenic naive T cells, unrelated OT-II TCR-transgenic memory-like TH17 cells infiltrate the spinal cord and produce IL-17A, interferon (IFN)-γ, and GM-CSF, increasing the susceptibility of the recipients to experimental autoimmune encephalomyelitis in an IL-1 receptor-dependent manner. In humans, IL-1R1high memory CD4+ T cells are major producers of IL-17A and IFN-γ in response to IL-1ß and IL-23. Collectively, our findings reveal the innate-like pathogenic function of antigen non-related memory CD4+ T cells, which contributes to the development of autoimmune diseases.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Imunidade Adaptativa , Animais , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Interferon gama/metabolismo , Interleucinas/imunologia , Interleucinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Receptores CCR6/genética , Receptores de Interleucina-1/metabolismo , Medula Espinal/imunologia , Medula Espinal/patologia , Células Th17/imunologia , Células Th17/metabolismo
18.
Nat Commun ; 9(1): 503, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29403003

RESUMO

Chitinase-3-like-1 (Chi3l1) is known to play a significant role in the pathogenesis of Type 2 inflammation and cancer. However, the function of Chi3l1 in T cell and its clinical implications are largely unknown. Here we show that Chi3l1 expression was increased in activated T cells, especially in Th2 cells. In addition, Chi3l1-deficient T cells are hyper-responsive to TcR stimulation and are prone to differentiating into Th1 cells. Chi3l1-deficient Th1 cells show increased expression of anti-tumor immunity genes and decreased Th1 negative regulators. Deletion of Chi3l1 in T cells in mice show reduced melanoma lung metastasis with increased IFNγ and TNFα-producing T cells in the lung. Furthermore, silencing of Chi3l1 expression in the lung using peptide-siRNA complex (dNP2-siChi3l1) efficiently inhibit lung metastasis with enhanced Th1 and CTL responses. Collectively, this study demonstrates Chi3l1 is a regulator of Th1 and CTL which could be a therapeutic target to enhance anti-tumor immunity.


Assuntos
Proteína 1 Semelhante à Quitinase-3/genética , Neoplasias Pulmonares/imunologia , Melanoma Experimental/imunologia , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia , Animais , Proteína 1 Semelhante à Quitinase-3/imunologia , Interferon gama/imunologia , Neoplasias Pulmonares/secundário , Melanoma Experimental/secundário , Camundongos , Camundongos Knockout , Terapêutica com RNAi , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Fator de Necrose Tumoral alfa/imunologia
19.
J Allergy Clin Immunol ; 141(1): 137-151, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28456618

RESUMO

BACKGROUND: Atopic dermatitis (AD) and psoriasis are the 2 most common chronic inflammatory skin diseases. There is an unmet medical need to overcome limitations for transcutaneous drug development posed by the skin barrier. OBJECTIVE: We aimed to identify a novel transdermal delivery peptide and to develop a transcutaneously applicable immunomodulatory protein for treating AD and psoriasis. METHODS: We identified and generated reporter proteins conjugated to astrotactin 1-derived peptide (AP), a novel transdermal delivery peptide of human origin, and analyzed the intracellular delivery efficiency of these proteins in mouse and human skin cells and tissues using multiphoton confocal microscopy. We also generated a recombinant therapeutic protein, AP-recombinant protein tyrosine phosphatase (rPTP), consisting of the phosphatase domain of the T-cell protein tyrosine phosphatase conjugated to AP. The immunomodulatory function of AP-rPTP was confirmed in splenocytes on cytokine stimulation and T-cell receptor stimulation. Finally, we confirmed the in vivo efficacy of AP-rPTP transdermal delivery in patients with oxazolone-induced contact hypersensitivity, ovalbumin-induced AD-like, and imiquimod-induced psoriasis-like skin inflammation models. RESULTS: AP-conjugated reporter proteins exhibited significant intracellular transduction efficacy in keratinocytes, fibroblasts, and immune cells. In addition, transcutaneous administration of AP-dTomato resulted in significant localization into the dermis and epidermis in both mouse and human skin. AP-rPTP inhibited phosphorylated signal transducer and activator of transcription (STAT) 1, STAT3, and STAT6 in splenocytes and also regulated T-cell activation and proliferation. Transcutaneous administration of AP-rPTP through the paper-patch technique significantly ameliorated skin tissue thickening, inflammation, and cytokine expression in both AD-like and psoriasis-like dermatitis models. CONCLUSION: We identified a 9-amino-acid novel transdermal delivery peptide, AP, and demonstrated its feasibility for transcutaneous biologic drug development. Moreover, AP-rPTP is a novel immunomodulatory drug candidate for human dermatitis.


Assuntos
Dermatite Atópica , Glicoproteínas , Proteínas do Tecido Nervoso , Peptídeos , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Psoríase , Proteínas Recombinantes de Fusão , Animais , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Derme/imunologia , Derme/patologia , Glicoproteínas/genética , Glicoproteínas/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/farmacologia , Peptídeos/genética , Peptídeos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/farmacologia , Psoríase/tratamento farmacológico , Psoríase/imunologia , Psoríase/patologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Fatores de Transcrição STAT/imunologia
20.
Nat Commun ; 6: 8244, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26372309

RESUMO

Central nervous system (CNS)-infiltrating effector T cells play critical roles in the development and progression of multiple sclerosis (MS). However, current drugs for MS are very limited due to the difficulty of delivering drugs into the CNS. Here we identify a cell-permeable peptide, dNP2, which efficiently delivers proteins into mouse and human T cells, as well as various tissues. Moreover, it enters the brain tissue and resident cells through blood vessels by penetrating the tightly organized blood-brain barrier. The dNP2-conjugated cytoplasmic domain of cytotoxic T-lymphocyte antigen 4 (dNP2-ctCTLA-4) negatively regulates activated T cells and shows inhibitory effects on experimental autoimmune encephalomyelitis in both preventive and therapeutic mouse models, resulting in the reduction of demyelination and CNS-infiltrating T helper 1 and T helper 17 cells. Thus, this study demonstrates that dNP2 is a blood-brain barrier-permeable peptide and dNP2-ctCTLA-4 could be an effective agent for treating CNS inflammatory diseases such as MS.


Assuntos
Barreira Hematoencefálica/metabolismo , Antígeno CTLA-4/imunologia , Proteínas de Transporte/metabolismo , Peptídeos Penetradores de Células/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Linfócitos T/imunologia , Animais , Modelos Animais de Doenças , Células HeLa , Humanos , Técnicas In Vitro , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/metabolismo , Células Th17/imunologia , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...